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Some practical formulas for calculating the polarization and the actual shape
function of quadrupole-broadened NMR transitions have been found. The
formulas use the spectrum of polarized deuterons with unresolved structure in the
case of an axisymmetric tensor of the electric field gradient. A method has been
developed for determining the polarization and the alignment on the sole basis of
the amplitudes of three extrema in the NMR spectrum in the case of a Boltzmann
distribution of spins. A good agreement is found with results of numerical
calculations by means of algorithms which are far more complex. This agreement
is found in the cases of both single and double quadrupole bonds in the molecules of
the amorphous materials which are used most commonly as polarized targets.

( This work was carried out in the Ultrahigh Energy Laboratory of the Joint
Institute for Nuclear Research.)

In this letter we propose a method for calculating the polarization and actual
lineshape of quadrupole-broadened NMR transitions of a polarized deuteron spin sys-
tem. This method was developed in the course of an effort by the CERN SMC colla-
boration to optimize the material of the world’s largest frozen polarized deuteron
target. The calculations are based on the axial symmetry of the tensor of the electric
field gradient in molecules, the theoretical lineshape of quadrupole transitions for
amorphous materials, and the experimental NMR spectrum. The results of this study
can be used to investigate the electronic structure of molecules.

The NMR spectrum of deuterons (I = 1) has two peaks (Fig. 1), which corre-
spond to two mutually overlapping, quadrupole-broadened transitions:
m= +lom=0and m=0-m= — 1, where m = ([,).

If there is a Boltzmann distribution in the spin system, the ratio of the intensities
of these transitions, I, /I_ = R, completely determines the sublevel populations p_ ,_
and therefore the principal parameters of the polarized target, specifically, its polariza-
tion p, and its alignment p,,:
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Here 4 and k are the Plack constant and the Boltzmann constant, v, is the Larmor
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FIG. 1. Nuclear-magnetic-resonance spectrum of I-butanol D10 with a polarization of 31.1%. Here x
represents the values of the extrema of the spectrum, from which R is calculated in expression (9).

frequency of deuterons, and 7, is the temperature of the deuteron spin system.

We denote the frequency distributions of the intensities of the transitions
m=+lm=0 and m=0-m —1 as J*(x) and J ~(x), respectively, where
x = 2Av/v, is the normalized frequency shift with respect to the deuteron Larmor
frequency,’ and

1
v=vp+ EUQ% (2)

Here v, = 3eQV,,/(2h), eQ is the deuteron quadrupole moment, and V,, is the elec-
tric field gradient along the principal axis of the gradient tensor. The problem is to
determine the functions J * and J — and the ratio of their total intensities (R) from the
experimental NMR spectrum of the deuterons, S(x) =J *(x) +J ~ (x), in the case in
which the functions J* (x) overlap in frequency. We introduce some auxiliary func-
tions, a symmetric function C(x) and an antisymmetric one A(x), defined by

Clz) = 118(@) + 5(-2)),  A(e) = 215(a) - S(~3)]. 3)

It follows from the axial symmetry of the field-gradient tensor that the NMR spec-
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trum is symmetric with respect to an axis drawn through v, which determines the
relationship between the functions J * (x) and J ~(x):

J*(=)/J™(~z) = R )

Using (3) and (4), we can easily derive general expressions for the functions J* (x).
These expressions are valid for not only a quadrupole broadening but also a dipole—
dipole broadening of the NMR spectrum:

T (8) = e [(R+ 1)A) + (R - 1)C(a))
(5)

(@) = (R - 1)0(a) - (R+ 1) A(=)]

The only unknown quantity in (5) is the parameter R. To determine it, we need some
further information on the functions J* (x). This information was found in Ref. 2
through the use of the fairly general and theoretically grounded assumption that the
functions J " (x = — 1) andJ —(x = + 1) are “smooth” curves at the maxima of the
functions J/ “(x = — 1) andJ T (x = + 1), respectively. A third-degree polynomial is
selected as a model curve, and the parameter R is calculated from the minimum of the
mean square deviation of J* (x) from this model curve. Some more-detailed theoreti-
cal arguments regarding the functions J* , which incorporate a dipole-dipole broaden-
ing of the spectrum of quadrupole transitions, are made in Refs. 1 and 3. Here R is
found by fitting the theoretical NMR lineshape to the experimental curve. Although
this method is useful for determining the asymmetry parameter of the field-gradient
tensor, additional parameters (characterizing the dipole—dipole broadening of the
spectrum) are used in calculating the polarization and the alignment. Equation (4)
with x = + 2, i.e., with the values of the NMR spectra in the wings, were used to
determine R in Ref. 4. That approach leads to only an approximate estimate of R,
since the molecules of the materials which are the most promising for use as polarized
targets contain double quadrupole bonds, which distort the shape of the wings of the
NMR signal.

In the method proposed below, R is calculated [see expression (9)] from the
values of three extrema of the deuteron NMR spectrum. The statistical errors are then
reduced through a refinement based on a minimum of the mean square deviation from
the model curve.

Here are the theoretical functions® J ;* (x) describing the lineshape of quadrupole
transitions in amorphous materials:

JH(z) = B(~z+1)"Y%, -—2<z<1,
(6)

B

Ji (z) = R(:v+ )73 —1<z<,

where B is a normalization constant. We assume that the contribution of dipole-dipole
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interactions to the values of these functions is negligible far from the pole of these
functions. The value of B can then be determined easily from the experimental spec-
trum at x = 0. Since we have 4(0) = 0, we have C(0) = S(0) =J 7 (0) +J (0) and
therefore B = S(0)R /(R + 1). It is also obvious that the values of the experimental
functions J " (— 1) and J ~( + 1) are

JH(+1) = S(+1) = J7 (+1), J(-1) = S(-1) = J;H(-1). (7)
Using (6) and (7), we find the following equation for R:

R 5007 _ S(0)
(R+n§?ﬁ]“[“+”‘(R+npﬂd’

R|S(-1) - (8)

where the correction factor d reflects the presence of single or double quadrupole
bonds in the molecule. In the simplest case, of single bonds, we have d=1. Equation
(8) is satisfied identically with

_ S(+1) = 8(0)/(2*/%d)
T §(-1) - S(0)/(2%/2d)’

R 9

Equations (1) and (9) show that all that is needed in order to calculated p, and p,,
are the amplitudes of three extrema of the NMR signal. The actual lineshape of each
quadrupole transition in the case of dipole—dipole broadening can be calculated from
(5) with R from (9). Expression (9) gives a surprisingly accurate description of the
polarization of deuterons according to the spectra given in Refs. 1-3 and as calculated
in the original studies by algorithms which are incomparably more complex. This
comment applies to spectra with not only single but also double quadrupole bonds. It
furthermore applies to spectra with small asymmetry parameters of the field-gradient
tensor. The error in the determination of the polarization through the use of graphical
information from these papers is less than + 3%. A better agreement, with an error of
less than + 2%, is found through the use of numerical data on the spectra of 1-2-
propanediol-D6, D8 and deuterated ethandiol. On the other hand, the spectrum for
the latter substance (Fig. 1 from Ref. 6) differs substantially with the results calculat-
ed by our method. That spectrum apparently does not correspond to thermal equilibri-
um in the deuteron spin system.

Let us calculated the correction d in expression (9) for double quadrupole bonds.
We assume that most of the deuterons, with a relative number C), have v, = v, (1),
while the other deuterons correspondingly have C, and v, (2), where C,<C, and
C, + C, = 1. The presence of double bonds leads to changes in model curves (6),
which are now written as the sum of two single transitions with weights C, and C,.
The normalization coefficient B, expressed in terms of S(0), remains the same in the
case of double bonds as in the case of single bonds, since the central frequency v, does
not change for either component of the spectrum. The values of the functions
J7(+ 1) and J,;7(—1) in (7) change by, respectively,

Ja(+1) = I (+1)d7, Jh(-1) = JF(-1)d, (10)
where
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FIG. 2. The transition lineshape J ~ (x) in 1-2-propanediol D8 calculated from (5). The dashed line shows
a model function J = (x) from (6) with d = 1.

d=[C1 +2/2Co(1+ vo (1) /vo(2)) /2, an

Using the data of Ref. 3 (see Figs. 2 and 4 of that paper) for 1-2-propanediol D8, we
find C,=6/8—(CD bond), C,=2/8—(0OD bond), and v, (1)/v,(2) =166.3/
197.9 = 0.84. We have d = 0.989. The correction to the polarization is only 0.2%, and
it goes in the direction of improving the agreement with the results of Ref. 3. Note that
the excellent agreement between the results calculated from expression (9) and the
results of Ref. 3 is found even at a small value of the asymmetry parameter of the field
gradient tensor.

It is not difficult to see that the correction factor ¢ in (9) can be determined far
more simply and accurately without using (11), by an iterative method. Varying d in
(9) near 1, while leaving the other amplitudes of the extrema fixed, we can optimize
this parameter by minimizing the mean-square deviation of J* (x) from model curves
(6). Consequently, in determining R we do not need to know the constants C,, C,,
vg (1), and v, (2). The method for calculating R acquires an importance in its own
right. Calculations show that the polarizations usually found in this manner differ by
less than 1% from the values with d = 1. Figure 2 shows the model function J, (x)
and the actual shape function J 7 (x) of the NMR transitions for the cases of quadru-
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pole and dipole-dipole broadening for 1-2-propanediol D8 according to calculations
from (6) and (5), respectively (d =1).

We note in conclusion that the method developed here is of practical usefulness
for physics experiments using polarized deuteron targets.

'F. Sperisen, Nucl. Instrum. Methods A 260, 455 (1987).

2Yu. F. Kiselev, V. V. Polyakov, A. I. Kovaley, Nucl. Instrum. Methods 220, 399 (1984).
*0. Hamada, S. Hiramatsu, S. Isagawa et al., Nucl. Instrum. Methods 189, 561 (1981).
‘K. Guckelsberger and F. Udo, Nucl. Instrum. Methods 137, 415 (1976).

SA. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961.

“W. de Boer, M. Borghini, K. Morimoto et al., Phys. Lett. A 46, 143 (1973).

Translated by D. Parsons





